10-18【管鹏飞】管楼1418 几何分析系列报告

发布者:万宏艳发布时间:2019-10-16浏览次数:803

Title:Minkowski type inequalities in space form: results and open problems

Speaker:管鹏飞  教授   (麦吉尔大学)

Time:2019年10月18日             下午  16:00-17:00

Room:东区管理科研楼  数学科学学院1418室


Abstract:The Minkowski inequality states that, for a convex body $/Omega/subset /mathbb R^{n+1}$, $/int_{/partial /Omega}H d/sigma /ge C_n (/int_{/partial /Omega} d/sigma)^{/frac{n-1}{n}}$ for some dimensional constant $C_n>0$, the equality holds if and only if $/Omega$ is a round ball. This inequality has been extended for starshaped domains (Guan-Li) and for area outer minimizing domains (Huisken). In this talk, the focus is this type of inequality in space form: hyperbolic space $/mathbb H^{n+1}$ and elliptic space $/mathbb S^{n+1}$. We will discuss some recent results and challenging open problems.



欢迎感兴趣的师生参加!