11-07【丁 青】管楼1418 几何分析系列报告

发布者:万宏艳发布时间:2019-11-05浏览次数:833


Title:Vortex Filament on Symmetric Lie Algebras and Generalized Bi-Schr\odinger Flows

Speaker:丁 青   教授    (复旦大学)

Time:2019年11月7日(周四)       下午   16:00-17:00

Room:东区管理科研楼   数学科学学院1418室


Abstract:In this talk, we display an evolving model on symmetric Lie algebras from a purely geometric way by using the Hamiltonian (or para-Hamiltonian) gradient flow of a fourth order functional called generalized bi-Schr\odinger flows, which corresponds to the Fukumoto-Moffatt's model in the theory of the vortex filament in physical, in $\mathbb R^3$. The theory of vortex filament in $\mathbb R^3$ or $\mathbb R^{2,1}$ up to the third-order approximation is shown to be generalized to symmetric Lie algebras in a unified way.