09-09【高 悦】五教5102 几何拓扑及高阶Teichmuller研讨班系列报告之三十八

发布者:徐明巧发布时间:2024-09-09浏览次数:245

题目: Shape of Thurston’s filling systole subset in surface moduli space


报告人:高悦,安徽师范大学


时间:2024年9月9日(星期一)14:00


地点:东区五教5102教室


摘要:In this talk, I am going to talk about the sparseness of Thurston's subset. Sparseness is a geometric concept on Thurston's subset first raised by Anderson- Parlier-Pettet in 2016. We have proved the sparseness of Thurston's subset in the sense of Teichmüller distance and Weil-Petersson distance. More precisely, most surfaces in genus g surface moduli space have Teichmüller distance $\frac{1}{5}\log\log g$ and Weil- Petersson distance $0.6521(\sqrt{\log g} − \sqrt{7\log\log g})$ to the Thurston's subset.